General Chemistry II Jasperse Electrochemistry. Extra Practice Problems

Oxidation Numbers	p1	Free Energy and Equilibrium	p10
Balancing Redox; Electrons Transferred; Oxidizing Agents; Reducing Agents	p2	K Values and Voltage	p11
Spontaneous Voltaic Electrochemical Cells	p4	Nonstandard Concentrations and Cell Potential	p11
Cell Potentials	p5	Electrolysis	p12
Predictable Oxidation and Reduction Strength Patterns	p8		
Ranking Relative Activity, Based on Observed	p9	Answer Key	p13
Reactivity or Lack Thereof			

Key Equations Given for Test:

$E^{\circ}_{cell} = E^{\circ}_{reduction} + E^{\circ}_{oxidation}$	$\Delta G^{\circ} = -96.5 n E^{\circ} cell (\Delta G^{\circ} in kJ)$
$E_{cell} = E^{\circ} - [0.0592/n] \log Q$	$\log K = nE^{\circ}/0.0592$
Mol $e^- = [A \bullet time (sec)/96,500]$	time (sec)= mol e • 96,500/current (in A)
$t = (t_{1/2}/0.693) \ln (A_o/A_t)$	$\ln (A_o/A_t) = 0.693 \cdot t / t_{1/2}$
$E = \Delta mc^2$ (m in kg, E in J, c = $3x10^8$ m/s)	

Oxidation Numbers

- 1. What is the **oxidation number of chromium** in the ionic compound ammonium dichromate, (NH₄)₂Cr₂O₇?
 - a. +3 b. +4 d. +6 e. +7
 - c. +5

2. What is the **oxidation number of carbon** in the ionic compound potassium carbonate, K₂CO₃?

- a. +3 b. +4 d. +6 e. +7
- 0. +4 c. +5
- C. +3

3. What are the oxidation numbers for nickel, sulfur, and oxygen in Ni₂(SO₄)₃?

a.	Ni +3; S +6; O -2	d.	Ni +2; S +2; O -2
b.	Ni +2; S +4; O -2	e.	Ni +2; S +4; O -1

- c. Ni +3; S +4; O -2
- 4. When hydrogen reacts with calcium metal, what are the oxidation numbers of the calcium and hydrogen in the CaH₂ product?

$$Ca(s) + H_2(g) \rightarrow CaH_2(s)$$

a.	-2 and +1	d.	0 and 0
b.	+1 and -2	e.	+2 and -2
c	+2 and -1		

- c. +2 and -1
- 5. What are the original and final oxidation numbers for iron in the smelting of iron from iron oxide?

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$

a.	$+2 \rightarrow 0$	d.	$+6 \rightarrow 0$
b.	$+3 \rightarrow 0$	e.	No change
	0 1 10		-

c. $0 \rightarrow +2$

Balancing Redox; Electrons Transferred; Oxidizing Agents; Reducing Agents

6. Balance the following reaction. How many electrons are transferred?

$$Mg + O_2 \rightarrow MgO$$

a. 3 b. 4 c. 6 d. 8 e. 2

7. Methanol fuel cells use the following reaction. How many electrons are transferred in this redox reaction as written?

 $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$

- a. 3 d. 12 e. 2 b. 6
- c. 8

8. What is the coefficient for hydroxide, and how many electrons are transferred after balancing the reaction?

 $Pb(OH)_4^{2-} + ClO^- \rightarrow PbO_2 + Cl^- + OH^- +$ H_2O

a.	2 OH ⁻ and 2 electrons	d.	2 OH and 4 electrons
b.	3 OH ⁻ and 4 electrons	e.	None of the above

- c. 1 OH⁻ and 2 electrons
- 9. Cobalt is one of many metals that can be oxidized by nitric acid. Balance the following the reaction. How many electrons are transferred, and what would be the coefficient for H₂O in the balanced reaction?

 $Co + NO_3^- + H^+ \rightarrow NO + H_2O + Co^{2+}$

a.	3 electrons; 2 H_2O	d.	6 electrons; 4 H ₂ O
b.	6 electrons; 6 H ₂ O	e.	None of the above
c.	4 electrons; 2 H_2O		

10. What was oxidized and what was reduced in the following reaction?

 $2Hg^{2+} + N_2H_4 \rightarrow 2Hg + N_2 +$ 4H^+

a. Hg^{2+} was oxidized; N_2H_4 was reduced b. Hg^{2+} was reduced; N_2H_4 was oxidized c. Hg^{2+} was oxidized; N_2H_4 was oxidized d. Hg^{2+} was reduced; N_2H_4 was reduced e. None of the above

11. The following reaction occurs in basic solution. <u>Identify the oxidizing agent</u>. Note the reaction equation is not balanced.

$$H_2O(1) + Zn(s) + NO_3(aq) + OH(aq) \rightarrow Zn(OH)_4(aq) + NH_3(aq)$$

d. $H_2O(l)$ (the oxygen)

e. $NH_3(aq)$ (the nitrogren)

a. Zn(s)

b. $NO_3^{-}(aq)$ (the nitrogen)

c. OH⁻(*aq*)

12. For the following reaction, which statement, A-D, is not correct? If more than one is not correct, respond E.

 $2\mathrm{Au} + 4\mathrm{Cl}_2 \rightarrow 2\mathrm{Au}\mathrm{Cl}_4^{-2}$

a.	Au is the reducing agent.	d.	The equation is fully balanced.
b.	Cl ₂ is the oxidizing agent	e.	More than one statement is not correct
c.	Au is oxidized.		

13. Which substance is the **reducing agent** in the following reaction?

 $Ca(s) + Zn^{2+}(aq) \rightarrow Ca^{2+}(aq) + Zn(s)$

- a. Ca(s)d. Zn(s)b. $Zn^{2+}(aq)$ e. None of the above
- c. $\operatorname{Ca}^{2+}(aq)$

14. Which substance is the reducing agent in the following reaction?

 $4\mathrm{H}^{+}(aq) + 2\mathrm{Cl}^{-}(aq) + \mathrm{MnO}_{2}(s) \rightarrow \mathrm{Cl}_{2}(g) + \mathrm{Mn}^{2+}(aq) + 2\mathrm{H}_{2}\mathrm{O}(l)$

- a. $H^+(aq)$ b. $C\Gamma(aq)$ d. $Cl_2(g)$ e. $Mn^{2+}(aq)$
- c. $MnO_2(s)$
- 15. Which one of the following items does not characterize an oxidizing agent?
 - a. An oxidizing agent gains electrons.
 - b. An oxidizing agent causes another species to be oxidized.
 - c. The oxidation number of an oxidizing agent decreases.
 - d. A good oxidizing agent is a metal in a high oxidation state, such as Mn^{7+} .
 - e. An example of a good oxidizing agent is an alkali metal, such as Na.
- 16. Which of the following statements about electrochemical cells is true?
 - a. Reduction occurs at the anode
 - b. An element with a high love for electrons is likely to be easily oxidized
 - c. Oxidation occurs at the anode
 - d. Only oxidation half-reactions are useful
 - e. none of the above

Spontaneous Voltaic Electrochemical Cells

- 17. Which statement about a voltaic cell is *not* correct?
 - a. Chemical species can have their oxidation number decreased at the cathode.
 - b. Reduction occurs at the cathode.
 - c. Usually the cathode is a metal strip.
 - d. Oxidation occurs at the anode.
 - e. Elemental metal is routinely converted to metal cations at the cathode
- 18. Which statement regarding voltaic cells is *not correct*?
 - a. Reduction occurs at the cathode.
 - b. Anions move through the barrier/bridge toward the electrode where oxidation is occurring.
 - c. The electrode where reduction is occurring is represented by a positive sign.
 - d. Electrons flow in the external circuit from the cathode to the anode.
 - e. Electrons flow in the external circuit toward the electrode represented by a positive sign.
- A voltaic cell is constructed based on the <u>oxidation of zinc metal and the reduction of silver cations</u>. Solutions of silver nitrate and zinc nitrate also were used. <u>Locate the silver and the silver nitrate on the diagram</u>.

20. A voltaic cell is constructed based on the oxidation of zinc metal and the reduction of silver cations. Solutions of silver nitrate and zinc nitrate also were used. Locate the zinc nitrate on the diagram, and identify the anode.

- 21. A voltaic cell is constructed based on the <u>oxidation of zinc metal and the reduction of silver cations</u>. Solutions of silver nitrate and zinc nitrate also were used. <u>Which statement is true</u> regarding the direction of electron flow through the external wire?
 - a) Electrons flow from left to right, from the Zinc
 - b) Electrons flow from right to left, to the Zinc
 - c) The zinc electrode will get larger as more zinc forms.d) Anions will flow through the "bridge" from the zinc side to the silver side

- - a. Ag, cathode
 - b. Ag, anode
 - c. Zn, cathode
 - d. Zn, anode
 - e. none of the above

.

Cell Potentials

23. What is E° for the following balanced reaction?

		$\operatorname{Zn}(s) + \operatorname{Pb}^{2+}(aq) \to \operatorname{Zn}^{2+}(aq) + \operatorname{Pb}(s)$			
		Half-reaction		Standara	Reduction Potential
		$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$			-0.763 -0.126
a.	+0.637 V	d		-0.889 V	
b.	–0.637 V	e		+0.889 V	
c.	+1.274 V				

24. What is E° for the following balanced reaction?

		$Al(s) + Fe^{3+}(aq) \rightarrow Al^{3+}(aq) + Fe(s)$		
		Half-reaction		Standard Reduction Potential
		$\operatorname{Fe}^{3+}(aq) + 2e^{-} \rightarrow \operatorname{Fe}(s)$ $\operatorname{Al}^{3+}(aq) + 2e^{-} \rightarrow \operatorname{Al}(s)$		+0.771 -1.660
a. b.	+1.280 V -2.431 V +2.431 V		d. e.	-0.889 V +0.889 V

25. What is E° for the following balanced reaction?

$$4\mathrm{H}^{+}(aq) + \mathrm{Fe}(s) + \mathrm{NO}_{3}(aq) \rightarrow \mathrm{Fe}^{3+}(aq) + \mathrm{NO}(aq) + 2\mathrm{H}_{2}\mathrm{O}(\mathrm{I})$$

	$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$ $Fe^{3+} + 3e^- \rightarrow Fe$	Standard Reduction Potential E° = +0.960 V E° = +0.771 V
a. +0.189 V b0.189 V c. +1.731 V	d1.731 V e. None of th	e above

26. Given the electrochemical reaction shown, if the standard reduction potential of $Ag^+ \rightarrow Ag$ is +0.80 V, and the standard reduction potential of $Cu^{2+} \rightarrow Cu$ is +0.34V, what is E° for the following?

$$Cu / Cu^{2+}(aq) / / Ag^{+}(aq) / A$$
 $E^{\circ} = ??? V$

a. +1.26 V b. +0.85 V c. +0.46 V d. -0.37 V

- e. none of the above
- 27. Given the electrochemical reaction shown, if the standard reduction potential of Ni⁺² \rightarrow Ni is -0.26 V, and the standard reduction potential of Al³⁺ \rightarrow Al is -1.66V, what is E° for the following?

Al / Al³⁺(aq) // Ni⁺²(aq) / Ni
$$E^{\circ} = ??? V$$

a. +1.26 V b. +0.85 V c. +0.46 V d. +1.40 V e. none of the above 28. Given the electrochemical reaction shown, if the standard reduction potential of $Zn^{2+} \rightarrow Zn$ is -0.76 V, what is the standard reduction potential of $Mg^{2+} \rightarrow Mg$?

 $Mg / Mg^{2+}(aq) // Zn^{2+}(aq) / Zn$ $E^{\circ} = +1.61 \text{ V}$

a. -0.85 V

- b. +0.85 V c. +2.37 V
- d. -2.37 V
- e. none of the above
- 29. Given the electrochemical retivitytion shown, if the standard reduction potential of $Cu^{2+} \rightarrow Cu$ is +0.34 V, what is the standard reduction potential of $Sn^{2+} \rightarrow Sn^{?}$

$$Sn / Sn^{2+}(aq) / Cu^{2+}(aq) / Cu$$
 $E^{\circ} = +0.48 V$

- a. -0.14 V b. +0.14 V
- c. +0.37 V
- d. -0.37 V
- e. none of the above
- 30. Identify the strongest reducing agent based on the following half-reactions. The standard reduction potentials are listed.

+1.22 V +0.61 V	$MnO_2(s) + 4H^+(aq) + 2e^- \rightarrow Mn^{2+}(aq) + 2H_2O(1)$ $Hg_2SO_4(s) + 2e^- \rightarrow 2Hg(1) + SO_4^{-2-}(aq)$
-0.95 V	$\operatorname{SnO}_2(s) + 2\operatorname{H}_2\operatorname{O}() + 4e^- \rightarrow \operatorname{Sn}(s) + 4\operatorname{OH}^-(aq)$
-1.48 V	$Cr(OH)_3(s) + 3e^- \rightarrow Cr(s) + 3OH^-(aq)$
	d. Sn
	e. Hg

- b. MnO₂
- c. Hg₂SO₄

a. Cr

31. Identify the strongest oxidizing agent from the following half-reactions. The standard reduction potentials are listed.

+1.22 V	$MnO_2(s) + 4H^+(aq) + 2e^- \rightarrow Mn^{2+}(aq) + 2H_2O(1)$
+0.61 V	$\mathrm{Hg}_2\mathrm{SO}_4(s) + 2\mathrm{e}^- \rightarrow 2\mathrm{Hg}(1) + \mathrm{SO}_4^{-2}(aq)$
–0.95 V	$\operatorname{SnO}_2(s) + 2\operatorname{H}_2\operatorname{O}() + 4e^- \rightarrow \operatorname{Sn}(s) + 4\operatorname{OH}^-(aq)$
–1.48 V	$Cr(OH)_3(s) + 3e^- \rightarrow Cr(s) + 3OH^-(aq)$

- Cr a.
- d. Sn MnO_2 e. Hg b.
- c. Hg₂SO₄

b.

32. In one episode of the TV sitcom, Gilligan's Island, the "professor" constructed voltaic cells to use as substitutes for their radio's dead batteries. Which scraps of metal from their damaged boat, the Minnow, could best be used to create a 1.5 V voltaic cell? (Assume that coconuts make great beakers and that seawater is a terrific electrolyte!)

Metal/Metal ion	E
lead/lead(II) (fishing weights)	-0.126
iron/iron(II) (the anchor)	-0.44
silver/silver(I) (Mrs. Howell's brooch)	-0.799
aluminum/aluminum(III) (the boat's flagpole)	-1.677

- a. silver anode and lead cathode
- d. aluminum anode and silver cathode
- e. lead cathode and silver anode

c. iron anode and aluminum cathode

aluminum anode and lead cathode

Standard Reduction Potentials (volts) in Aqueous Solution			
	$Pb^{4+} + 2e^{-} \rightarrow Pb^{2+}$	+1.80	
	$Au^{3+} + 3e^- \rightarrow Au$	+1.50	
	$Fe^{3+} + 3e^- \rightarrow Fe$	+0.771	
	$I_2 + 2e^- \rightarrow 2 I^-$	+0.535	
	$Pb^{2+} + 2e^{-} \rightarrow Pb$	-0.124	
	$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66	
	$Mg^{2+} + 2e^{-} \rightarrow Mg$	-2.37	
	$K^+ + e^- \rightarrow K$	-2.93	

- 33. What is the standard cell potential for a voltaic cell using the Pb^{2+}/Pb and Mg^{2+}/Mg half-reactions? Which metal is the cathode? (Use the Standard Reduction Potentials table shown above)
 - a. -2.25 V, Pb is the cathode
 - b. +2.25 V, Mg is the cathode
 - c. -2.25 V, Mg is the cathode

- d. +2.25 V, Pb is the cathode
- e. -2.49 V, Mg is the cathode
- 34. What is the standard cell potential for a voltaic cell using the Al^{3+}/Al and Fe^{3+}/Fe half-reactions? Which metal is the anode? (Use the Standard Reduction Potentials table shown above)
 - а -2.43 V, Al is the anode
 - b. +2.43 V, Al is the anode
 - c. -0.89 V, Fe is the anode

- d. +0.89 V, Fe is the anode
- e. None of the above

35. Using the Table of Standard Reduction Potentials table shown above, which is the strongest oxidizing agent?

- Pb^{4+} d. K a. Pb^{2+} b. e. Al
- K^+ c.

36. Using the Table of Standard Reduction Potentials table shown above, which is the strongest reducing agent?

- Pb^{4+} d. K a. Pb²⁺ b. e. Al
- c. K^+
- 37. Use the Table of Standard Reduction Potentials table, which species would react with Fe?

a.	Pb ⁴⁺ only	d.	Both Pb ⁴⁺ and Au ³⁺
b.	Au ³⁺ only	e.	Both Pb ²⁺ and Au
c.	I_2 and Pb^{2+}		

38. Use the Table of Standard Reduction Potentials table, which species would react with AI^{3+} ?

a.	Pb only	d.	Both Mg ⁺² and K ⁺
b.	Au ³⁺ only	e.	Both Mg and K
c.	Fe and Pb		

- 39. Using the Table of Standard Reduction Potentials table shown above, what is the standard cell potential for an electrochemical cell that has iron (Fe) and magnesium (Mg) electrodes? Also, identify the cathode.
 - a. +3.14 V with Fe as the cathode
 - b. +3.14 V with Mg as the cathode c. -3.14 V with Fe as the cathode
- d. -3.14 V with Mg as the cathode
- e. +1.60 V with Fe as the cathode

Predictable Patterns in Oxidation and Reduction Strength. (Should be able to recognize from periodic table, but without looking at a table with reduction potentials)

- 40. Glancing at a periodic table, where do you expect to find elements that are good oxidizing agents?
 - on the right (except for the noble gases) a.
 - b. in the middle left
 - c. in the top left

41. Glancing at a periodic table, where do you expect to find elements that are good reducing agents?

- in groups 16 and 17 a.
- b. on the left
- c. in the middle
- 42. Based on the periodic table and general patterns of activity, which is the correct ranking of the halogens as oxidizing agents? (you should be able to answer without looking at a reduction-potential table.)
- 43. Based on the periodic table and general patterns of activity, which is the correct ranking of the following metals as reducing agents? (Atomic numbers shown)
 - Mg (12) K (19) Au (79) Fe (26)
 - a. Mg (strongest reducing agent) > K > Fe > Au (weakest reducing agent)

 - b. K (strongest reducing agent) > Mg > Fe > Au (weakest reducing agent) c. Au (strongest reducing agent) > Mg > Fe > K (weakest reducing agent) d. Fe (strongest reducing agent) > Au > Mg > K (weakest reducing agent)
- 44. Based on the periodic table and general patterns of activity, which of the following would react with metallic calcium? KBr NaL FeCl₂ NiBr₂
 - a. KBr and NaI only
 - b. FeCl₂ only
 - c. NiBr₂ only
 - d. both FeCl₂ and NiBr₂

45. Based on the periodic table and general patterns of activity, which of the following would react with metallic sodium? I_2 I. FeCl₂ NiBr₂

- a. I_2 only
- b. I only
- c. NiBr₂ only
- d. I₂, FeCl₂ and NiBr₂

- e.
- - d. at the bottom
- - in group 17
- d. at the bottom е in the transition metals

- F_2 Cl_2 Br_2 I_2

Ranking Relative Activity, Based on Observed Reactivity or Lack Thereof

46. Given the following laboratory observation, which of the following statements is **NOT TRUE**?

$$Sn + 2AgBr \rightarrow 2Ag + SnBr_2$$

2Ag + SnBr_2 \rightarrow No Reaction

- a. Sn is a stronger reducing agent than Ag
- b. Ag^+ is a stronger oxidizing agent than Sn^{2+}
- c. The reduction potential for Ag^+ is more positive than the reduction potential for Sn^{2+}
- d. Sn^{2+} is a stronger oxidizing agent than Ag^{+}
- e. none of the above
- 47. Given the following laboratory observation, which of the following statements is **NOT TRUE**?

$$Zn + CuBr_2 \rightarrow Cu + ZnBr_2$$

 $Cu + ZnBr_2 \rightarrow No Reaction$

- a. Zn is a stronger reducing agent than Cu
- b. Cu^{+2} is a stronger oxidizing agent than Zn^{2+}
- c. Cu is a stronger reducing agent than Zn
- d. The fact that copper doesn't react with ZnBr₂ proves that copper loves/attracts/holds electrons more than does zinc.
- e. none of the above
- 48. Given the following laboratory observation, which of the following statements is **NOT TRUE**?

$$Mg + NiBr_2 \rightarrow Ni + MgBr_2$$

Ni + MgBr_2 \rightarrow No Reaction

- a. Ni loves electrons more than Mg. That's why Mg gives electrons to Ni²⁺
- b. Mg loves electrons less than Ni. That's why Mg^{2+} doesn't take electrons from Mg

c. When a redox reaction does NOT occur (equation 2), it means that the reduced form of nickel is a weaker reducing agent than the reduced form of Mg

d. When a redox reaction DOES occur (equation 1), it means that the reduced form of Mg is a stronger reducing agent than the reduced form of Ni

e. When a redox reaction does NOT occur (equation 2), it means that the reduced form of nickel is a stronger reducing agent than the reduced form of Mg

49. Which of the following correctly ranks the "activity" (strength as reducing agents) of the elements Ag, Au, and Sn, given the following observed reactivity information?

$$Sn + 2AgBr \rightarrow SnBr_2 + 2Ag$$

 $3Sn + 2AuBr_3 \rightarrow 3SnBr_2 + 2Au$
 $3Ag + AuBr_3 \rightarrow 3AgBr + Au$

- a. Sn > Ag > Au
 b. Sn > Au > Ag
 c. Au > Ag > Sn
 d. Ag > Au > Sn
- 50. Which of the following correctly ranks the "activity" (strength as reducing agents) of the elements Cu, Cd, and Zn, given the following observed reactivity information?

$$Zn + CuBr_2 \rightarrow Cu + ZnBr_2$$

 $Cd + ZnBr_2 \rightarrow No Reaction$
 $Cu + CdBr_2 \rightarrow No Reaction$

 $a. \ Zn > Cu > Cd \\ b. \ Zn > Cd > Cu \\ c. \ Cd > Cu > Zn \\ d. \ Cu > Cd > Zn \\ e > Cd > Zn \\ d. \ Cu > Cd > Zn \\ e > Zn \\ d. \ Cu > Cd > Zn \\ e > Zn$

Free Energy and Equilibrium. Key Equation: $\Delta G^{\circ} = -96.5 \text{nE}^{\circ} \text{cell}$ ($\Delta G^{\circ} \text{ in kJ/mol}$)

51. Given the electrochemical reaction shown, what is the standard free energy change ΔG° if $E^{\circ} = +1.61$ V?

Mg / Mg²⁺(aq) // Zn²⁺(aq) / Zn
$$E^{\circ} = +1.61 V$$

a. -311 kJ/mol

- b. +311 kJ/mol
- c. -155 kJ/mol
- d. +155 kJ/mol
- e. none of the above
- 52. The oxidation of hydrogen by oxygen is one of the most-used reactions in fuel-cell technology. The overall reaction, which is given below, has a ΔG° value of -474 kJ/mol. What is the standard cell potential for this fuel cell?
 - $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ $\Delta G^\circ = -474 \text{ kJ/mol}$
 - a. 2.46 V b. 4.91 V d. 2.46 V e. 1.50 V
 - c. 1.23 V
- 53. What is ΔG° for the following balanced reaction, if $E^{\circ} = +2.431 \text{ V}$?

$$Al(s) + Fe^{3+}(aq) \rightarrow Al^{3+}(aq) + Fe(s)$$
 $E^{\circ} = +2.431 V$

- a. -704 kJ/mol
- b. +704 kJ/mol
- c. -235 kJ/mol
- d. -469 kJ/mol
- e. none of the above
- 54. The oxidation of methanol, as described by the equation below, has a ΔG° value of -937.9 kJ/mol. What is the standard cell potential for a methanol fuel cell?

	$2CH_{3}OH + 3O_{2} \rightarrow 2 CO_{2} + 4H_{2}O$	$\Delta G^{\circ} = -937.9 \text{ kJ/mol}$
0.405 V	d. –2.43 V	
9.72 V	e. –9.72 V	
0.010 17		

c. 0.810 V

a. b.

55. For the following reaction, all of the reactants and products are in their standard states/standard 1.0M concentrations. Which of the following statements must be <u>true</u>?

 $Zn(s) + SnBr_2(aq) \rightarrow ZnBr_2(aq) + Sn(s) = +0.60 V$

- a. The reaction would be product-favored as written
- b. ΔG° for the reaction as written is **positive**
- c. Zinc is undergoing reduction
- d. none of the above

K Values and Voltage Key Equation: log K = nE°/0.0592

56. When a voltaic cell reaches **equilibrium**,

- a. E=0b. $E_{cell}=0$ d. E=Ke. $E_{cell}=Q$
- c. $E_{\text{cell}} = \mathbf{K}$
- 57. Electrochemical cell potentials can be used to determine equilibrium constants that would be otherwise difficult to determine because concentrations are small. What is K for the following balanced reaction, if $E^{\circ} = +0.0218 V$?

$$3Zn(s) + 2Cr^{3+}(aq) \rightarrow 3Zn^{+2}(aq) + Cr(s)$$
 $E^{\circ} = +0.0218 V$

a. 1.3 x 10⁻³ b. 2.2 c. 162 d. 0.37

58. What is E° for the following balanced reaction, if K=4.38 x 10¹⁰?

$$Zn(s) + Fe^{2+}(aq) \rightarrow Zn^{+2}(aq) + Fe(s)$$
 $K = 4.38 \times 10^{10}$

a. -0.578 V b. +0.866 V c. -0.315 V d. +0.315 V

Nonstandard Concentrations and Cell Potential. Key Equation: Ecell = E° - [0.0592/n]log Q

59. The value of E° for the following reaction is 1.10 V. What is the value of E_{cell} when the concentration of Cu^{2+} is 1.0 M and the concentration of Zn^{2+} is 0.025 M?

 $Zn(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Zn^{2+}(aq)$ 1.0 M 0.025 M $E^{\circ} = 1.10 V$

 $E^{\circ} = 1.260 V$

- a. 1.40 V
 b. 0.95 V
 c. 1.15 V
 d. 0.80 V
- 60. The value of E° for the following reaction is 1.260 V. What is the value of E_{cell} given the concentrations shown?

 $2\mathrm{Al}(\mathrm{s}) + 3\mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow 3\mathrm{Cd}(\mathrm{s}) + 2\mathrm{Al}^{3+}(\mathrm{aq})$ 0.1 M 0.6 M

a. 1.235 V b. 1.285 V c. 1.15 V d. 1.37 V

61. The value of E° for the following reaction is 0.189 V. What is the value of E_{cell} given the concentrations shown?

$$4H^{+}(aq) + Fe(s) + NO_{3}(aq) \rightarrow Fe^{3+}(aq) + NO(aq) + 2H_{2}O(1) \qquad E^{\circ} = 0.189 V$$

0.1 M 0.6 M 1.0 M 0.5 M

a. -0.215 V b. 0.112 V c. 0.189 V d. 0.266 V

Electrolysis: Key Equations: $Mol e^- = [A \cdot time (sec)/96,500]$

time (sec) = mol $e \cdot 96,500$ /current (in A)

- 62. Copper metal (63.546 g/mol) is purified by electrolysis. <u>How much copper metal</u> (in grams) could be produced from copper(II) oxide by applying a current of 10.0 amps at the appropriate negative potential for 12.0 hours?
 - a. 284 g d. 14.2 g
 - b. 142 g e. 4.48 g
 - c. 28.4 g
- 63. <u>How long would it take</u> to electroplate a flute with 28.3 g of silver (107.87 g/mol) at a constant current of 2.0 amps using AgNO₃?
 - a. 211 min
 - b. 422 min

d. 1688 min e. 105 min

- c. 844 min
- 64. <u>How many grams of aluminum</u> metal (26.982 g/mol) can be produced by the electrolysis of Al₂O₃ using a current of 100 amperes for 24 hours?
 - a. 805 b. 2,400 c. 7.5×10^{13} c. 7.5×10^{12}
 - c. 8.1×10^5

65. If in using a lead-acid battery to start a car, 1.00 gram of Pb (207.2 g/mol) is consumed on the anode, how long will it take to recharge the battery, using a current of 0.500 amperes to turn the PbSO₄ that was produced back into Pb?

- a.15.5 mind.21 minb.1864 mine.42 min
- c. 31 min
- 66. Chromium often is electroplated on other metals and even plastics to produce a shiny metallic appearance. <u>How many</u> <u>grams</u> of chromium (51.996 g/mol) would plate out from a solution of Cr(NO₃)₃ when 10 amps of current are passed through the electrolytic cell for 5.36 hours?
 - a.
 17.3 g
 d.
 104 g

 b.
 34.7 g
 e.
 11.6 g

 c.
 52.0 g
 g
- 67. Suppose an aluminum (26.982 g/mol) beer can weighs 40.0 g. For how long would a current of 100.0 amp need to be passed through a molten AlF₃ electrolysis cell to produce enough aluminum to replace a discarded beer can?

a.	4.44 hr	d.	42.7 min
b.	23.8 min	e.	2.38 hr
c.	1.19 hr		

General Chemistry II Jasperse Electrochemistry. Extra Practice Problems

ANSWERS

1. D	35. A
2. B	36. D
3. A	37. D
4. C	38. E
5. B	39. A
6. B	40. A
7. D	41. B
8. A	42. A
9. D	43. B
10. B	44. D
11. B	45. D
12. D	46. D
13. A	47. C
14. B	48. E
15. E	49. A
16. C	50. B
17. E	51. A
18. D	52. C
19. C	53. A
20. B	54. C
21. A	55. A
22. A	56. B
23. A	57. C (162)
24. C	58. D
25. A	59. C
26. C	60. A
27. D	61. B
28. D	62. B
29. A	63. A
30. A	64. A
31. B	65. C
32. B	66. B
33. D	67. C
34. B	